Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Public Health ; 22(1): 2048, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348479

RESUMEN

BACKGROUND: Consumer perceptions of legal cannabis products may drive willingness to purchase from the illegal or legal market; however, little is known on this topic. The current study examined perceptions of legal products among Canadian cannabis consumers over a 3-year period following federal legalization of non-medical cannabis in 2018. METHODS: Data were analyzed from Canadian respondents in the International Cannabis Policy Study, a repeat cross-sectional survey conducted in 2019-2021. Respondents were 15,311 past 12-month cannabis consumers of legal age to purchase cannabis. Weighted logistic regression models examined the association between perceptions of legal cannabis and province of residence, and frequency of cannabis use over time. RESULTS: In 2021, cannabis consumers perceived legal cannabis to be safer to buy (54.0%), more convenient to buy (47.8%), more expensive (47.2%), safer to use (46.8%) and higher quality (29.3%) than illegal cannabis. Except for safety of purchasing, consumers had more favourable perceptions of legal cannabis in 2021 than 2019 across all outcomes. For example, consumers had higher odds of perceiving legal cannabis as more convenient to buy in 2021 than 2019 (AOR = 3.09, 95%CI: 2.65,3.60). More frequent consumers had less favourable perceptions of legal cannabis than less frequent consumers. CONCLUSIONS: Three years since legalization, Canadian cannabis consumers generally had increasingly favourable perceptions of legal vs. illegal products - except for price - with variation across the provinces and frequency of cannabis use. To achieve public health objectives of legalization, federal and provincial governments must ensure that legal cannabis products are preferred to illegal, without appealing to non-consumers.


Asunto(s)
Cannabis , Humanos , Estudios Transversales , Canadá , Comportamiento del Consumidor , Gobierno Estatal
2.
Addict Biol ; 26(2): e12891, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32135573

RESUMEN

Long-term tobacco dependence typically develops during adolescence and neurodevelopmental nicotine exposure is associated with affective disturbances that manifest as a variety of neuropsychiatric comorbidities in clinical and preclinical studies, including mood and anxiety-related disorders. The nucleus accumbens shell (NASh) is critically involved in regulating emotional processing, and both molecular and neuronal disturbances in this structure are associated with mood and anxiety-related pathologies. In the present study, we used a rodent model of adolescent neurodevelopmental nicotine exposure to examine the expression of several molecular biomarkers associated with mood/anxiety-related phenotypes. We report that nicotine exposure during adolescence (but not adulthood) induces profound upregulation of the ERK 1-2 and Akt-GSK-3 signalling pathways directly within the NASh, as well as downregulation of local D1R expression that persists into adulthood. These adaptations were accompanied by decreases in τ, α, ß, and γ-band oscillatory states, hyperactive medium spiny neuron activity with depressed bursting rates, and anxiety and depressive-like behavioural abnormalities. Pharmacologically targeting these molecular and neuronal adaptations revealed that selective inhibition of local ERK 1-2 and Akt-GSK-3 signalling cascades rescued nicotine-induced high-γ-band oscillatory signatures and phasic bursting rates in the NASh, suggesting that they are involved in mediating adolescent nicotine-induced depressive and anxiety-like neuropathological trajectories.


Asunto(s)
Ansiedad/etiología , Depresión/etiología , Glucógeno Sintasa Quinasa 3/efectos de los fármacos , Nicotina/farmacología , Núcleo Accumbens/efectos de los fármacos , Adolescente , Animales , Ansiedad/patología , Biomarcadores , Depresión/patología , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Fenotipo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Tabaquismo/patología
3.
J Neurosci ; 41(4): 739-750, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33268546

RESUMEN

Chronic adolescent exposure to Δ-9-tetrahydrocannabinol (THC) is linked to elevated neuropsychiatric risk and induces neuronal, molecular and behavioral abnormalities resembling neuropsychiatric endophenotypes. Previous evidence has revealed that the mesocorticolimbic circuitry, including the prefrontal cortex (PFC) and mesolimbic dopamine (DA) pathway are particularly susceptible to THC-induced pathologic alterations, including dysregulation of DAergic activity states, loss of PFC GABAergic inhibitory control and affective and cognitive abnormalities. There are currently limited pharmacological intervention strategies capable of preventing THC-induced neuropathological adaptations. l-Theanine is an amino acid analog of l-glutamate and l-glutamine derived from various plant sources, including green tea leaves. l-Theanine has previously been shown to modulate levels of GABA, DA, and glutamate in various neural regions and to possess neuroprotective properties. Using a preclinical model of adolescent THC exposure in male rats, we report that l-theanine pretreatment before adolescent THC exposure is capable of preventing long-term, THC-induced dysregulation of both PFC and VTA DAergic activity states, a neuroprotective effect that persists into adulthood. In addition, pretreatment with l-theanine blocked THC-induced downregulation of local GSK-3 (glycogen synthase kinase 3) and Akt signaling pathways directly in the PFC, two biomarkers previously associated with cannabis-related psychiatric risk and subcortical DAergic dysregulation. Finally, l-theanine powerfully blocked the development of both affective and cognitive abnormalities commonly associated with adolescent THC exposure, further demonstrating functional and long-term neuroprotective effects of l-theanine in the mesocorticolimbic system.SIGNIFICANCE STATEMENT With the increasing trend of cannabis legalization and consumption during adolescence, it is essential to expand knowledge on the potential effects of adolescent cannabis exposure on brain development and identify potential pharmacological strategies to minimize Δ-9-tetrahydrocannabinol (THC)-induced neuropathology. Previous evidence demonstrates that adolescent THC exposure induces long-lasting affective and cognitive abnormalities, mesocorticolimbic dysregulation, and schizophrenia-like molecular biomarkers that persist into adulthood. We demonstrate for the first time that l-theanine, an amino acid analog of l-glutamate and l-glutamine, is capable of preventing long-term THC side effects. l-Theanine prevented the development of THC-induced behavioral aberrations, blocked cortical downregulation of local GSK-3 (glycogen synthase kinase 3) and Akt signaling pathways, and normalized dysregulation of both PFC and VTA DAergic activity, demonstrating powerful and functional neuroprotective effects against THC-induced developmental neuropathology.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/prevención & control , Dronabinol/toxicidad , Glutamatos/farmacología , Alucinógenos/toxicidad , Trastornos del Humor/inducido químicamente , Trastornos del Humor/prevención & control , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Ansiedad/prevención & control , Ansiedad/psicología , Trastornos del Conocimiento/psicología , Glucógeno Sintasa Quinasa 3/efectos de los fármacos , Masculino , Trastornos del Humor/psicología , Proteína Oncogénica v-akt/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Conducta Social , Área Tegmental Ventral/efectos de los fármacos
4.
J Neurosci ; 39(44): 8762-8777, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31570536

RESUMEN

Evidence suggests that the phytocannabinoids Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) differentially regulate salience attribution and psychiatric risk. The ventral hippocampus (vHipp) relays emotional salience via control of dopamine (DA) neuronal activity states, which are dysregulated in psychosis and schizophrenia. Using in vivo electrophysiology in male Sprague Dawley rats, we demonstrate that intra-vHipp THC strongly increases ventral tegmental area (VTA) DA neuronal frequency and bursting rates, decreases GABA frequency, and amplifies VTA beta, gamma and ε oscillatory magnitudes via modulation of local extracellular signal-regulated kinase phosphorylation (pERK1-2). Remarkably, whereas intra-vHipp THC also potentiates salience attribution in morphine place-preference and fear conditioning assays, CBD coadministration reverses these changes by downregulating pERK1-2 signaling, as pharmacological reactivation of pERK1-2 blocked the inhibitory properties of CBD. These results identify vHipp pERK1-2 signaling as a critical neural nexus point mediating THC-induced affective disturbances and suggest a potential mechanism by which CBD may counteract the psychotomimetic and psychotropic side effects of THC.SIGNIFICANCE STATEMENT Strains of marijuana with high levels of delta-9-tetrahydrocannabinol (THC) and low levels of cannabidiol (CBD) have been shown to underlie neuropsychiatric risks associated with high-potency cannabis use. However, the mechanisms by which CBD mitigates the side effects of THC have not been identified. We demonstrate that THC induces cognitive and affective abnormalities resembling neuropsychiatric symptoms directly in the hippocampus, while dysregulating dopamine activity states and amplifying oscillatory frequencies in the ventral tegmental area via modulation of the extracellular signal-regulated kinase (ERK) signaling pathway. In contrast, CBD coadministration blocked THC-induced ERK phosphorylation, and prevented THC-induced behavioral and neural abnormalities. These findings identify a novel molecular mechanism that may account for how CBD functionally mitigates the neuropsychiatric side effects of THC.


Asunto(s)
Cannabidiol/farmacología , Dronabinol/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Psicotrópicos/farmacología , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Fosforilación , Ratas Sprague-Dawley , Recompensa , Área Tegmental Ventral/efectos de los fármacos
5.
Cereb Cortex ; 29(7): 3140-3153, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30124787

RESUMEN

Considerable evidence demonstrates strong comorbidity between nicotine dependence and mood and anxiety disorders. Nevertheless, the neurobiological mechanisms linking adolescent nicotine exposure to mood and anxiety disorders are not known. Disturbances in the mesocorticolimbic dopamine (DA) system, comprising the prefrontal cortex (PFC), ventral tegmental area (VTA), and nucleus accumbens (NAc), are correlates of mood and anxiety-related symptoms and this circuitry is strongly influenced by acute or chronic nicotine exposure. Using a combination of behavioral pharmacology, in vivo neuronal electrophysiology and molecular analyses, we examined and compared the effects of chronic nicotine exposure in rats during adolescence versus adulthood to characterize the mechanisms by which adolescent nicotine may selectively confer increased risk of developing mood and anxiety-related symptoms in later life. We report that exposure to nicotine, selectively during adolescence, induces profound and long-lasting neuronal, molecular and behavioral disturbances involving PFC DA D1R and downstream extracellular-signal-related kinase 1-2 (ERK 1-2) signaling. Remarkably, adolescent nicotine induced a persistent state of hyperactive DA activity in the ventral tegmental area (VTA) concomitant with hyperactive neuronal activity states in the PFC. Our findings identify several unique neuronal and molecular biomarkers that may serve as functional risk mechanisms for the long-lasting neuropsychiatric effects of adolescent smoking behaviors.


Asunto(s)
Ansiedad/inducido químicamente , Encéfalo/efectos de los fármacos , Depresión/inducido químicamente , Nicotina/toxicidad , Agonistas Nicotínicos/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/fisiopatología , Masculino , Fenotipo , Ratas , Ratas Sprague-Dawley , Tiempo
6.
Neuropsychopharmacology ; 44(4): 817-825, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30538288

RESUMEN

The use of cannabis for therapeutic and recreational purposes is growing exponentially. Nevertheless, substantial questions remain concerning the potential cognitive and affective side-effects associated with cannabis exposure. In particular, the effects of specific marijuana-derived phytocannabinoids on neural regions such as the prefrontal cortex (PFC) are of concern, given the role of the PFC in both executive cognitive function and affective processing. The main biologically active phytocannabinoids, ∆-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), interact with multiple neurotransmitter systems important for these processes directly within the PFC. Considerable evidence has demonstrated that acute or chronic THC exposure may induce psychotomimetic effects, whereas CBD has been shown to produce potentially therapeutic effects for both psychosis and/or anxiety-related symptoms. Using an integrative combination of cognitive and affective behavioral pharmacological assays in rats, we report that acute intra-PFC infusions of THC produce anxiogenic effects while producing no impairments in executive function. In contrast, acute infusions of intra-PFC CBD impaired attentional set-shifting and spatial working memory, without interfering with anxiety or sociability behaviors. In contrast, intra-PFC CBD reversed the cognitive impairments induced by acute glutamatergic antagonism within the PFC, and blocked the anxiogenic properties of THC, suggesting that the therapeutic properties of CBD within the PFC may be present only during pathologically aberrant states within the PFC. Interestingly, the effects of PFC THC vs. CBD were found to be mediated through dissociable CB1 vs. 5-HT1A-dependent receptor signaling mechanisms, directly in the PFC.


Asunto(s)
Afecto/efectos de los fármacos , Cannabidiol/farmacología , Dronabinol/farmacología , Función Ejecutiva/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Animales , Ansiedad/inducido químicamente , Ansiedad/prevención & control , Conducta Animal/efectos de los fármacos , Benzopiranos/farmacología , Cannabidiol/antagonistas & inhibidores , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Dronabinol/antagonistas & inhibidores , Masculino , Microinyecciones , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Conducta Social
7.
Front Psychiatry ; 9: 281, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013490

RESUMEN

Marijuana is the most commonly used drug of abuse among adolescents. Considerable clinical evidence supports the hypothesis that adolescent neurodevelopmental exposure to high levels of the principal psychoactive component in marijuana, -delta-9-tetrahydrocanabinol (THC), is associated with a high risk of developing psychiatric diseases, such as schizophrenia later in life. This marijuana-associated risk is believed to be related to increasing levels of THC found within commonly used marijuana strains. Adolescence is a highly vulnerable period for the development of the brain, where the inhibitory GABAergic system plays a pivotal role in the maturation of regulatory control mechanisms in the central nervous system (CNS). Specifically, adolescent neurodevelopment represents a critical period wherein regulatory connectivity between higher-order cortical regions and sub-cortical emotional processing circuits such as the mesolimbic dopamine (DA) system is established. Emerging preclinical evidence demonstrates that adolescent exposure to THC selectively targets schizophrenia-related molecular and neuropharmacological signaling pathways in both cortical and sub-cortical regions, including the prefrontal cortex (PFC) and mesolimbic DA pathway, comprising the ventral tegmental area (VTA) and nucleus accumbens (NAc). Prefrontal cortical GABAergic hypofunction is a key feature of schizophrenia-like neuropsychopathology. This GABAergic hypofunction may lead to the loss of control of the PFC to regulate proper sub-cortical DA neurotransmission, thereby leading to schizophrenia-like symptoms. This review summarizes preclinical evidence demonstrating that reduced prefrontal cortical GABAergic neurotransmission has a critical role in the sub-cortical DAergic dysregulation and schizophrenia-like behaviors observed following adolescent THC exposure.

8.
J Neurosci ; 38(19): 4543-4555, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29686048

RESUMEN

Disturbances in prefrontal cortical (PFC) dopamine (DA) transmission are well established features of psychiatric disorders involving pathological memory processing, such as post-traumatic stress disorder and opioid addiction. Transmission through PFC DA D4 receptors (D4Rs) has been shown to potentiate the emotional salience of normally nonsalient emotional memories, whereas transmission through PFC DA D1 receptors (D1Rs) has been demonstrated to selectively block recall of reward- or aversion-related associative memories. In the present study, using a combination of fear conditioning and opiate reward conditioning in male rats, we examined the role of PFC D4/D1R signaling during the processing of fear-related memory acquisition and recall and subsequent sensitivity to opiate reward memory formation. We report that PFC D4R activation potentiates the salience of normally subthreshold fear conditioning memory cues and simultaneously potentiates the rewarding effects of systemic or intra-ventral tegmental area (VTA) morphine conditioning cues. In contrast, blocking the recall of salient fear memories with intra-PFC D1R activation, blocks the ability of fear memory recall to potentiate systemic or intra-VTA morphine place preference. These effects were dependent upon dissociable PFC phosphorylation states involving calcium-calmodulin-kinase II or extracellular signal-related kinase 1-2, following intra-PFC D4 or D1R activation, respectively. Together, these findings reveal new insights into how aberrant PFC DAergic transmission and associated downstream molecular signaling pathways may modulate fear-related emotional memory processing and concomitantly increase opioid addiction vulnerability.SIGNIFICANCE STATEMENT Post-traumatic stress disorder is highly comorbid with addiction. In this study, we use a translational model of fear memory conditioning to examine how transmission through dopamine D1 or D4 receptors, in the prefrontal cortex (PFC), may differentially control acquisition or recall of fear memories and how these mechanisms might regulate sensitivity to the rewarding effects of opioids. We demonstrate that PFC D4 activation not only controls the salience of fear memory acquisition, but potentiates the rewarding effects of opioids. In contrast, PFC D1 receptor activation blocks recall of fear memories and prevents potentiation of opioid reward effects. Together, these findings demonstrate novel PFC mechanisms that may account for how emotional memory disturbances might increase the addictive liability of opioid-class drugs.


Asunto(s)
Miedo/psicología , Memoria/fisiología , Recuerdo Mental/fisiología , Narcóticos/farmacología , Corteza Prefrontal/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D4/fisiología , Recompensa , Animales , Condicionamiento Operante/efectos de los fármacos , Agonistas de Dopamina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Morfina/farmacología , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D4/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/fisiología
9.
Sci Rep ; 7(1): 11420, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900286

RESUMEN

Chronic adolescent marijuana use has been linked to the later development of psychiatric diseases such as schizophrenia. GABAergic hypofunction in the prefrontal cortex (PFC) is a cardinal pathological feature of schizophrenia and may be a mechanism by which the PFC loses its ability to regulate sub-cortical dopamine (DA) resulting in schizophrenia-like neuropsychopathology. In the present study, we exposed adolescent rats to Δ-9-tetra-hydrocannabinol (THC), the psychoactive component in marijuana. At adulthood, we characterized the functionality of PFC GABAergic neurotransmission and its regulation of sub-cortical DA function using molecular, behavioral and in-vivo electrophysiological analyses. Our findings revealed a persistent attenuation of PFC GABAergic function combined with a hyperactive neuronal state in PFC neurons and associated disruptions in cortical gamma oscillatory activity. These PFC abnormalities were accompanied by hyperactive DAergic neuronal activity in the ventral tegmental area (VTA) and behavioral and cognitive abnormalities similar to those observed in psychiatric disorders. Remarkably, these neuronal and behavioral effects were reversed by pharmacological activation of GABAA receptors in the PFC. Together, these results identify a mechanistic link between dysregulated frontal cortical GABAergic inhibition and sub-cortical DAergic dysregulation, characteristic of well-established neuropsychiatric endophenotypes.


Asunto(s)
Dopamina/metabolismo , Dronabinol/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Psicotrópicos/farmacología , Ácido gamma-Aminobutírico/metabolismo , Animales , Biomarcadores , Ondas Encefálicas/efectos de los fármacos , Cognición , Glutamato Descarboxilasa/metabolismo , Memoria/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Ratas , Receptores de GABA-A/metabolismo , Esquizofrenia/etiología , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología , Psicología del Esquizofrénico
10.
Cannabis Cannabinoid Res ; 2(1): 8-20, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861501

RESUMEN

Introduction: The GPR55 receptor has been identified as an atypical cannabinoid receptor and is implicated in various physiological processes. However, its functional role in the central nervous system is not currently understood. The presence of GPR55 receptor in neural regions such as the ventral hippocampus (vHipp), which is critical for cognition, recognition memory, and affective processing, led us to hypothesize that intra-vHipp GPR55 transmission may modulate mesolimbic activity states and related behavioral phenomena. The vHipp is involved in contextual memory and affective regulation through functional interactions with the mesolimbic dopamine system. Materials and Methods: Using a combination of in vivo electrophysiology and behavioral pharmacological assays in rats, we tested whether intra-vHipp activation of GPR55 receptor transmission with the fatty acid amide, palmitoylethanolamide (PEA), a lipid neuromodulator with agonist actions at the GPR55 receptor, may modulate mesolimbic dopaminergic activity states. We further examined the potential effects of intra-vHipp PEA in affective, cognitive and contextual memory tasks. Discussion: We report that intra-vHipp PEA produces a hyper-dopaminergic state in the mesolimbic system characterized by increased firing and bursting activity of ventral tegmental area dopaminergic neuron populations. Furthermore, while PEA-induced activation of GPR55 transmission had no effects on opiate-related reward-related memory formation, we observed strong disruptions in social interaction and recognition memory, spatial location memory, and context-independent associative fear memory formation. Finally, the effects of intra-vHipp PEA were blocked by a selective GPR55 receptor antagonist, CID160 and were dependent upon NMDA receptor transmission, directly in the vHipp. Conclusions: The present results add to a growing body of evidence demonstrating important functional roles for GPR55 signaling in cannabinoid-related neuronal and behavioral phenomena and underscore the potential for GPR55 signaling in the mediation of cannabinoid-related effects independently of the CB1/CB2 receptor systems.

11.
Neurosci Biobehav Rev ; 75: 157-165, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28185872

RESUMEN

Growing clinical and pre-clinical evidence points to a critical role for cannabidiol (CBD), the largest phytochemical component of cannabis, as a potential pharmacotherapy for various neuropsychiatric disorders. In contrast to delta-9-tetrahydrocannabinol (THC), which is associated with acute and neurodevelopmental pro-psychotic side-effects, CBD possesses no known psychoactive or dependence-producing properties. However, evidence has demonstrated that CBD strongly modulates the mesolimbic dopamine (DA) system and may possess promising anti-psychotic properties. Despite the psychotropic differences between CBD and THC, little is known regarding their molecular and neuronal effects on the mesolimbic DA system, nor how these differential effects may relate to their potential pro vs. anti-psychotic properties. This review summarizes clinical and pre-clinical evidence demonstrating CBD's modulatory effects on DA activity states within the mesolimbic pathway, functional interactions with the serotonin 5-HT1A receptor system, and their downstream molecular signaling effects. Together with clinical evidence showing that CBD may normalize affective and cognitive deficits associated with schizophrenia, CBD may represent a promising treatment for schizophrenia, acting through novel molecular and neuronal mesolimbic substrates.


Asunto(s)
Esquizofrenia , Cannabidiol , Dopamina , Dronabinol , Humanos
12.
Cereb Cortex ; 27(2): 1297-1310, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26733534

RESUMEN

Considerable evidence suggests that adolescent exposure to delta-9-tetrahydrocanabinol (THC), the psychoactive component in marijuana, increases the risk of developing schizophrenia-related symptoms in early adulthood. In the present study, we used a combination of behavioral and molecular analyses with in vivo neuronal electrophysiology to compare the long-term effects of adolescent versus adulthood THC exposure in rats. We report that adolescent, but not adult, THC exposure induces long-term neuropsychiatric-like phenotypes similar to those observed in clinical populations. Thus, adolescent THC exposure induced behavioral abnormalities resembling positive and negative schizophrenia-related endophenotypes and a state of neuronal hyperactivity in the mesocorticolimbic dopamine (DA) pathway. Furthermore, we observed profound alterations in several prefrontal cortical molecular pathways consistent with sub-cortical DAergic dysregulation. Our findings demonstrate a profound dissociation in relative risk profiles for adolescent versus adulthood exposure to THC in terms of neuronal, behavioral, and molecular markers resembling neuropsychiatric pathology.


Asunto(s)
Cannabinoides/farmacología , Dopamina/metabolismo , Corteza Prefrontal/efectos de los fármacos , Conducta Social , Envejecimiento , Animales , Conducta Animal/efectos de los fármacos , Cannabinoides/metabolismo , Hipercinesia/metabolismo , Masculino , Corteza Prefrontal/metabolismo , Ratas Sprague-Dawley , Esquizofrenia/metabolismo
13.
Can J Psychiatry ; 61(6): 328-34, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27254841

RESUMEN

Marijuana is the most widely used drug of abuse among adolescents. Adolescence is a vulnerable period for brain development, during which time various neurotransmitter systems such as the glutamatergic, GABAergic, dopaminergic, and endocannabinoid systems undergo extensive reorganization to support the maturation of the central nervous system (CNS). ▵-9-tetrahydrocannabinol (THC), the psychoactive component of marijuana, acts as a partial agonist of CB1 cannabinoid receptors (CB1Rs). CB1Rs are abundant in the CNS and are central components of the neurodevelopmental changes that occur during adolescence. Thus, overactivation of CB1Rs by cannabinoid exposure during adolescence has the ability to dramatically alter brain maturation, leading to persistent and enduring changes in adult cerebral function. Increasing preclinical evidence lends support to clinical evidence suggesting that chronic adolescent marijuana exposure may be associated with a higher risk for neuropsychiatric diseases, including schizophrenia. In this review, we present a broad overview of current neurobiological evidence regarding the long-term consequences of adolescent cannabinoid exposure on adult neuropsychiatric-like disorders.


Asunto(s)
Conducta del Adolescente , Cannabis/efectos adversos , Abuso de Marihuana/complicaciones , Trastornos Mentales/etiología , Modelos Animales , Adolescente , Conducta del Adolescente/efectos de los fármacos , Animales , Humanos , Ratas
14.
Neuropsychopharmacology ; 41(12): 2839-2850, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27296152

RESUMEN

Emerging evidence suggests that the largest phytochemical component of cannabis, cannabidiol (CBD), may possess pharmacotherapeutic properties in the treatment of neuropsychiatric disorders. CBD has been reported to functionally interact with both the mesolimbic dopamine (DA) and serotonergic (5-HT) receptor systems. However, the underlying mechanisms by which CBD may modulate emotional processing are not currently understood. Using a combination of in vivo electrophysiological recording and fear conditioning in rats, the present study aimed to characterize the behavioral, neuroanatomical, and pharmacological effects of CBD within the mesolimbic pathway, and its possible functional interactions with 5-HT and DAergic transmission. Using targeted microinfusions of CBD into the shell region of the mesolimbic nucleus accumbens (NASh), we report that intra-NASh CBD potently blocks the formation of conditioned freezing behaviors. These effects were challenged with DAergic, cannabinoid CB1 receptor, and serotonergic (5-HT1A) transmission blockade, but only 5-HT1A blockade restored associative conditioned freezing behaviors. In vivo intra-ventral tegmental area (VTA) electrophysiological recordings revealed that behaviorally effective doses of intra-NASh CBD elicited a predominant decrease in spontaneous DAergic neuronal frequency and bursting activity. These neuronal effects were reversed by simultaneous blockade of 5-HT1A receptor transmission. Finally, using a functional contralateral disconnection procedure, we demonstrated that the ability of intra-NASh CBD to block the formation of conditioned freezing behaviors was dependent on intra-VTA GABAergic transmission substrates. Our findings demonstrate a novel NAcVTA circuit responsible for the behavioral and neuronal effects of CBD within the mesolimbic system via functional interactions with serotonergic 5-HT1A receptor signaling.


Asunto(s)
Cannabidiol/farmacología , Dopamina/metabolismo , Miedo/efectos de los fármacos , Memoria/efectos de los fármacos , Neuronas/efectos de los fármacos , Núcleo Accumbens/citología , Serotonina/metabolismo , Transmisión Sináptica/efectos de los fármacos , Área Tegmental Ventral/citología , Potenciales de Acción/efectos de los fármacos , Animales , Condicionamiento Psicológico/efectos de los fármacos , Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Electrochoque , Masculino , Vías Nerviosas/fisiología , Neurotransmisores/farmacología , Núcleo Accumbens/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Serotonina/farmacología
15.
J Neurosci ; 36(18): 5160-9, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27147666

RESUMEN

UNLABELLED: Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdopaminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor compliance and treatment outcomes. Emerging evidence points to the involvement of a specific phytochemical component of marijuana called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses. However, the neuronal and molecular mechanisms through which CBD may exert these effects are entirely unknown. We used amphetamine (AMPH)-induced sensitization and sensorimotor gating in rats, two preclinical procedures relevant to schizophrenia-related psychopathology, combined with in vivo single-unit neuronal electrophysiology recordings in the ventral tegmental area, and molecular analyses to characterize the actions of CBD directly in the nucleus accumbens shell (NASh), a brain region that is the current target of most effective antipsychotics. We demonstrate that Intra-NASh CBD attenuates AMPH-induced sensitization, both in terms of DAergic neuronal activity measured in the ventral tegmental area and psychotomimetic behavioral analyses. We further report that CBD controls downstream phosphorylation of the mTOR/p70S6 kinase signaling pathways directly within the NASh. Our findings demonstrate a novel mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology. SIGNIFICANCE STATEMENT: The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment of schizophrenia. However, the mechanisms by which CBD may produce antipsychotic effects are entirely unknown. Using preclinical behavioral procedures combined with molecular analyses and in vivo neuronal electrophysiology, our findings identify a functional role for the nucleus accumbens as a critical brain region whereby CBD can produce effects similar to antipsychotic medications by triggering molecular signaling pathways associated with the effects of classic antipsychotic medications. Specifically, we report that CBD can attenuate both behavioral and dopaminergic neuronal correlates of mesolimbic dopaminergic sensitization, via a direct interaction with mTOR/p70S6 kinase signaling within the mesolimbic pathway.


Asunto(s)
Anfetamina/antagonistas & inhibidores , Conducta Animal/efectos de los fármacos , Cannabidiol/farmacología , Estimulantes del Sistema Nervioso Central/antagonistas & inhibidores , Inhibidores de Captación de Dopamina/antagonistas & inhibidores , Neuronas Dopaminérgicas/efectos de los fármacos , Sistema Límbico/fisiología , Vías Nerviosas/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 70-kDa/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Anfetamina/farmacología , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Inhibidores de Captación de Dopamina/farmacología , Masculino , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto/efectos de los fármacos
16.
Biol Psychiatry ; 80(3): 216-25, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-26681496

RESUMEN

BACKGROUND: Cannabinoid receptor transmission strongly influences emotional processing, and disturbances in cannabinoid signaling are associated with various neuropsychiatric disorders. The mammalian ventral hippocampus (vHipp) is a critical neural region controlling mesolimbic activity via glutamatergic projections to the nucleus accumbens. Furthermore, vHipp abnormalities are linked to schizophrenia-related psychopathology. Nevertheless, the mechanisms by which intra-vHipp cannabinoid signaling may modulate mesolimbic activity states and emotional processing are not currently understood. METHODS: Using an integrative combination of in vivo electrophysiological recordings and behavioral pharmacologic assays in rats, we tested whether activation of cannabinoid type 1 receptors (CB1R) in the vHipp may modulate neuronal activity in the shell subregion of the nucleus accumbens (NASh). We next examined how vHipp CB1R signaling may control the salience of rewarding or aversive emotional memory formation and social interaction/recognition behaviors via intra-NASh glutamatergic transmission. RESULTS: We demonstrate for the first time that vHipp CB1R transmission can potently modulate NASh neuronal activity and can differentially control the formation of context-dependent and context-independent forms of rewarding or aversion-related emotional associative memories. In addition, we found that activation of vHipp CB1R transmission strongly disrupts normal social behavior and cognition. Finally, we report that these behavioral effects are dependent upon intra-NASh alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate receptor transmission. CONCLUSIONS: Together, these findings demonstrate a critical role for hippocampal cannabinoid signaling in the modulation of mesolimbic neuronal activity states and suggest that dysregulation of CB1R transmission in the vHipp→NASh circuit may underlie hippocampal-mediated affective and social behavioral disturbances present in neuropsychiatric disorders.


Asunto(s)
Reacción de Prevención , Emociones/fisiología , Hipocampo/fisiología , Núcleo Accumbens/citología , Núcleo Accumbens/fisiología , Receptor Cannabinoide CB1/fisiología , Recompensa , Animales , Benzoxazinas/administración & dosificación , Benzoxazinas/farmacología , Cognición/fisiología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Maleato de Dizocilpina/administración & dosificación , Maleato de Dizocilpina/farmacología , Hipocampo/efectos de los fármacos , Masculino , Memoria/fisiología , Microinyecciones , Morfolinas/administración & dosificación , Morfolinas/farmacología , Naftalenos/administración & dosificación , Naftalenos/farmacología , Neuronas/fisiología , Núcleo Accumbens/efectos de los fármacos , Piperidinas/administración & dosificación , Piperidinas/farmacología , Pirazoles/administración & dosificación , Pirazoles/farmacología , Quinoxalinas/administración & dosificación , Quinoxalinas/farmacología , Ratas , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptores AMPA/agonistas , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/fisiología , Rimonabant , Conducta Social
17.
Neuropsychopharmacology ; 41(3): 847-57, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26174594

RESUMEN

The mammalian basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) comprise a functionally interconnected circuit that is critical for processing opiate-related associative memories. In the opiate-naïve state, reward memory formation in the BLA involves a functional link between dopamine (DA) D1 receptor (D1R) and extracellular signal-related kinase 1/2 (ERK1/2) signaling substrates, but switches to a DA D2 (D2R)/Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα)-dependent memory substrate following chronic opiate exposure and spontaneous withdrawal. Using conditioned place preference (CPP) in rats paired with molecular analyses, we examined the role of intra-mPFC CaMKII, ERK and DAergic activity during the formation of opiate associative memories, and how opiate exposure state may regulate the functions of these molecular memory pathways. We report that the role of CaMKIIα signaling is functionally reversed within the BLA-mPFC pathway depending on opiate exposure state. Thus, in the opiate-naïve state, intra-mPFC but not intra-BLA blockade of CaMKII signaling prevents formation of opiate reward memory. However, following chronic opiate exposure and spontaneous withdrawal, the role of CaMKII signaling in the BLA-mPFC is functionally reversed. This behavioral memory switch corresponds to a selective increase in the expression of D2R and CaMKIIα, but not other calcium/calmodulin-related molecules, nor D1R expression levels within the mPFC.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Analgésicos Opioides/farmacología , Heroína/farmacología , Memoria/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Masculino , Memoria/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Corteza Prefrontal/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transducción de Señal/efectos de los fármacos , Conducta Espacial/efectos de los fármacos , Conducta Espacial/fisiología , Síndrome de Abstinencia a Sustancias/metabolismo
18.
Eur Neuropsychopharmacol ; 26(1): 55-64, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26689328

RESUMEN

In many species, adolescence is a critical phase in which the endocannabinoid system can regulate the maturation of important neuronal networks that underlie cognitive function. Therefore, adolescents may be more susceptible to the neural consequences of chronic cannabis abuse. We reported previously that chronically exposing adolescent rats to the synthetic cannabinoid agonist CP55,940 leads to impaired performances in adulthood i.e. long-lasting deficits in both visual and spatial short-term working memories. Here, we examined the synaptic structure and function in the prefrontal cortex (PFC) of adult rats that were chronically treated with CP55,940 during adolescence. We found that chronic cannabinoid exposure during adolescence induces long-lasting changes, including (1) significantly altered dendritic arborization of pyramidal neurons in layer II/III in the medial PFC (2) impaired hippocampal input-induced synaptic plasticity in the PFC and (3) significant changes in the expression of PSD95 (but not synaptophysin or VGLUT3) in the medial PFC. These changes in synaptic structure and function in the PFC provide key insight into the structural, functional and molecular underpinnings of long-term cognitive deficits induced by adolescent cannabinoid exposure. They suggest that cannabinoids may impede the structural maturation of neuronal circuits in the PFC, thus leading to impaired cognitive function in adulthood.


Asunto(s)
Cannabinoides/toxicidad , Ciclohexanoles/toxicidad , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/crecimiento & desarrollo , Animales , Western Blotting , Enfermedad Crónica , Dendritas/efectos de los fármacos , Dendritas/patología , Dendritas/fisiología , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Hipocampo/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Abuso de Marihuana/patología , Abuso de Marihuana/fisiopatología , Proteínas de la Membrana/metabolismo , Microelectrodos , Corteza Prefrontal/patología , Corteza Prefrontal/fisiopatología , Células Piramidales/efectos de los fármacos , Células Piramidales/patología , Células Piramidales/fisiología , Ratas Wistar , Sinaptofisina/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo
19.
Plant Physiol ; 167(3): 963-71, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25588734

RESUMEN

The transfer of water from phloem into xylem is thought to mitigate increasing hydraulic tension in the vascular system of trees during the diel cycle of transpiration. Although a putative plant function, to date there is no direct evidence of such water transfer or the contributing pathways. Here, we trace the radial flow of water from the phloem into the xylem and investigate its diel variation. Introducing a fluorescent dye (0.1% [w/w] fluorescein) into the phloem water of the tree species Eucalyptus saligna allowed localization of the dye in phloem and xylem tissues using confocal laser scanning microscopy. Our results show that the majority of water transferred between the two tissues is facilitated via the symplast of horizontal ray parenchyma cells. The method also permitted assessment of the radial transfer of water during the diel cycle, where changes in water potential gradients between phloem and xylem determine the extent and direction of radial transfer. When injected during the morning, when xylem water potential rapidly declined, fluorescein was translocated, on average, farther into mature xylem (447 ± 188 µm) compared with nighttime, when xylem water potential was close to zero (155 ± 42 µm). These findings provide empirical evidence to support theoretical predictions of the role of phloem-xylem water transfer in the hydraulic functioning of plants. This method enables investigation of the role of phloem tissue as a dynamic capacitor for water storage and transfer and its contribution toward the maintenance of the functional integrity of xylem in trees.


Asunto(s)
Floema/metabolismo , Tallos de la Planta/metabolismo , Árboles/metabolismo , Agua/metabolismo , Xilema/metabolismo , Transporte Biológico , Eucalyptus/anatomía & histología , Eucalyptus/ultraestructura , Colorantes Fluorescentes/metabolismo , Factores de Tiempo , Madera/anatomía & histología , Madera/ultraestructura
20.
Neuropsychopharmacology ; 40(6): 1436-47, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25510937

RESUMEN

Disturbances in cannabinoid type 1 receptor (CB1R) signaling have been linked to emotional and cognitive deficits characterizing neuropsychiatric disorders, including schizophrenia. Thus, there is growing interest in characterizing the relationship between cannabinoid transmission, emotional processing, and dopamine (DA)-dependent behavioral deficits. The CB1R is highly expressed in the mammalian nervous system, particularly in the hippocampus. Activation of the ventral hippocampal subregion (vHipp) is known to increase both the activity of DAergic neurons located in the ventral tegmental area (VTA) and DA levels in reward-related brain regions, particularly the nucleus accumbens (NAc). However, the possible functional relationship between hippocampal CB1R transmission and VTA DA neuronal activity is not currently understood. In this study, using in vivo neuronal recordings in rats, we demonstrate that activation of CB1R in the vHipp strongly increases VTA DA neuronal firing and bursting activity, while simultaneously decreasing the activity of VTA non-DA neurons. Furthermore, using a conditioned place preference procedure and a social interaction test, we report that intra-vHipp CB1R activation potentiates the reward salience of normally sub-threshold conditioning doses of opiates and induces deficits in natural sociability and social recognition behaviors. Finally, these behavioral effects were prevented by directly blocking NAc DAergic transmission. Collectively, these findings identify hippocampal CB1R transmission as a critical modulator of the mesolimbic DA pathway and in the processing of reward and social-related behavioral phenomena.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Hipocampo/fisiología , Relaciones Interpersonales , Receptor Cannabinoide CB1/metabolismo , Recompensa , Área Tegmental Ventral/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Ratas Sprague-Dawley , Receptores Dopaminérgicos , Conducta Espacial/efectos de los fármacos , Conducta Espacial/fisiología , Área Tegmental Ventral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...